Учебники 📚 » Презентации » Презентации по Математике » Способы решения квадратных уравнений

Способы решения квадратных уравнений

Способы решения квадратных уравнений - Класс учебник | Академический школьный учебник скачать | Сайт школьных книг учебников uchebniki.org.ua
Смотреть онлайн
Поделиться с друзьями:
Способы решения квадратных уравнений:
Презентация на тему Способы решения квадратных уравнений к уроку математике

Презентация для классов "Способы решения квадратных уравнений" онлайн бесплатно на сайте электронных школьных презентаций uchebniki.org.ua

Преподаватель математики Московского суворовского военного училища Корнякова Елена Владимировна Спос
1 слайд

Преподаватель математики Московского суворовского военного училища Корнякова Елена Владимировна Способы решения квадратных уравнений Фестиваль педагогических идей “Открытый урок”. “Презентация к уроку”

Способы решения квадратных уравнений Нахождение корней неполных квадратных уравнений Нахождение корн
2 слайд

Способы решения квадратных уравнений Нахождение корней неполных квадратных уравнений Нахождение корней уравнения по формуле I Нахождение корней уравнения по формуле II Нахождение корней уравнения с помощью обратной теоремы Виета Свойства коэффициентов квадратного уравнения

Неполные квадратные уравнения ax2 = 0 x2 = 0 x1 = x2 = 0 Пример 1 Пример 2 Пример 3 6х2 = 0, х2 = 0,
3 слайд

Неполные квадратные уравнения ax2 = 0 x2 = 0 x1 = x2 = 0 Пример 1 Пример 2 Пример 3 6х2 = 0, х2 = 0, х1 = х2 = 0.

Нахождение дискриминанта 2. Определение количества корней квадратного уравнения и их нахождение, в з
4 слайд

Нахождение дискриминанта 2. Определение количества корней квадратного уравнения и их нахождение, в зависимости от значения D D>0 – два корня D=0 – один корень D

Формула II (коэффициент b - четный) 1. Нахождение дискриминанта 2. Определение количества корней ква
5 слайд

Формула II (коэффициент b - четный) 1. Нахождение дискриминанта 2. Определение количества корней квадратного уравнения и их нахождение, в зависимости от значения D1 D1 >0 – два корня D1=0 – один корень D1

Обратная теорема Виета Если числа m и n таковы, что их сумма равна –р, а их произведение равно q, то
6 слайд

Обратная теорема Виета Если числа m и n таковы, что их сумма равна –р, а их произведение равно q, то эти числа являются корнями уравнения x2 + px + q = 0 Пример 1. х2 + 2х – 48 = 0 х1 + х2 = -2 и х1 * х2 = -48 х1 = -8; х2 = 6 Ответ; -8; 6 Пример 2. х2 + 16х + 63 = 0 х1 + х2 = -16 и х1 * х2 = 63 х1 = -7; х2 = -9 Ответ: -9; -7 Пример 3. х2 – 19х + 88 = 0 х1 + х2 = 19 и х1*х2 = 88 х1 = 8; х2 = 11 Ответ: 8; 11

Если a + b + c = 0, то х1 = 1, х2 = Пример: 2х2 – 113х + 111 = 0 2 – 113 + 111 = 0 х1 = 1; х2 = 55,5
7 слайд

Если a + b + c = 0, то х1 = 1, х2 = Пример: 2х2 – 113х + 111 = 0 2 – 113 + 111 = 0 х1 = 1; х2 = 55,5 Ответ: 1; 55,5 Если a – b + c = 0, то х1 = - 1, х2 = - Пример: 4х2 + 117х + 113 = 0 4 – 117 + 113 = 0 х1 = - 1; х2 = - 28,25 Ответ: - 28,25; - 1 Свойства коэффициентов уравнения

Решение уравнений по формуле I сам. работа Ответ:
8 слайд

Решение уравнений по формуле I сам. работа Ответ:

Решение уравнений по формуле I сам. работа Ответ: 6
9 слайд

Решение уравнений по формуле I сам. работа Ответ: 6

Решение уравнений по формуле I Ответ: нет корней сам. работа
10 слайд

Решение уравнений по формуле I Ответ: нет корней сам. работа

Решение уравнений по формуле II сам. работа Ответ: -8; 6
11 слайд

Решение уравнений по формуле II сам. работа Ответ: -8; 6

сам. работа Решение неполных квадратных уравнений (с = 0) 5х2 – 12х = 0 х(5х – 12) = 0 х1 = 0 или 5х
12 слайд

сам. работа Решение неполных квадратных уравнений (с = 0) 5х2 – 12х = 0 х(5х – 12) = 0 х1 = 0 или 5х – 12 = 0, 5х = 12, х2 = 2,5. Ответ: 0; 2,5

сам. работа Решение неполных квадратных уравнений (b = 0) 9х2 – 16 = 0, 9х2 = 16, х2 = х = х1 = х2 =
13 слайд

сам. работа Решение неполных квадратных уравнений (b = 0) 9х2 – 16 = 0, 9х2 = 16, х2 = х = х1 = х2 = Ответ: ; 3х2 + 27 = 0, 3х2 = - 27, х2 = - 9. т.к. - 9 < 0, то уравнение корней не имеет. Ответ: корней нет Решение неполных квадратных уравнений (b = 0)

Самостоятельная работа Решите уравнение:
14 слайд

Самостоятельная работа Решите уравнение:

Отзывы на uchebniki.org.ua "Способы решения квадратных уравнений" (0)
Оставить отзыв
Прокомментировать
Регистрация
Вход
Авторизация