Алгоритм построения орграфа Хаффмана (алгоритм сжатия)
- Рубрика: Презентации / Презентации по Информатике
- Просмотров: 227
Презентация для классов "Алгоритм построения орграфа Хаффмана (алгоритм сжатия)" онлайн бесплатно на сайте электронных школьных презентаций uchebniki.org.ua
Алгоритм построения орграфа Хаффмана (алгоритм сжатия) Учитель информатики: Константинова Елена Ивановна Муниципальное образовательное учреждение Раменская средняя общеобразовательная школа №8
Давид Хаффман (1925-1999) Давид начал свою научную карьеру студентом в Массачусетсом технологическом институте (MIT), где построил свои коды в начале пятидесятых годов прошлого века.
Закодируем предложение «НА_ДВОРЕ_ТРАВА,_НА_ТРАВЕ_ДРОВА» Вначале нужно подсчитать количество вхождений каждого символа в тексте. Создаем первый узел 0 1 3 6 4 2 1 2 2 4 2 2 5 а в д , е н р о т _ 6 4 2 1 2 2 4 2 2 5 а в д , е н р о т _
Создаем еще один узел 1 1 4 0 4 0 0 1 3 0 0 1 1 4 Создаем еще один узел 3 6 4 2 1 2 2 4 2 2 5 а в д , е н р о т _ 6 4 2 1 2 2 4 2 2 5 а в д , е н р о т _
Создаем еще один узел 1 1 1 0 0 4 0 0 0 1 7 1 8 7 0 0 0 0 1 1 1 1 4 4 Создаем еще один узел 6 4 2 1 2 2 4 2 2 5 а в д , е н р о т _ 6 4 2 1 2 2 4 2 2 5 а в д , е н р о т _
Создаем еще один узел 1 1 1 1 0 0 0 0 0 0 0 1 1 1 13 8 9 6 4 2 1 2 2 4 2 2 5 а в д , е н р о т _
Создаем еще один узел 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 13 17 6 4 2 1 2 2 4 2 2 5 а в д , е н р о т _
Создаем еще один узел 30 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 6 4 2 1 2 2 4 2 2 5 а в д , е н р о т _
Чтобы определить код для каждого из символов, входящих в сообщение, мы должны пройти путь от листа дерева, соответствующего этому символу, до корня дерева, накапливая биты при перемещении по ветвям дерева. Полученная таким образом последовательность битов является кодом данного символа, записанным в обратном порядке. а в д , е н р о т _ 00 010 0110 0111 1000 1001 101 1100 1101 111 6 4 2 1 2 2 4 2 2 5
ПОДСЧИТАЕМ, СКОЛЬКО ДВОИЧНЫХ СИМВОЛОВ ОКАЖЕТСЯ В СООБЩЕНИИ «НА_ ДВОРЕ_ ТРАВА,_ НА_ ТРАВЕ_ ДРОВА» ДЛЯ ЭТОГО НАДО НАЙТИ ПРОИЗВЕДЕНИЕ ЧИСЛА СИМВОЛОВ В КОДЕ КАЖДОЙ БУКВЫ НА КОЛИЧЕСТВО РАЗ, КОТОРОЕ ЭТА БУКВА ВСТРЕЧАЕТСЯ В СООБЩЕНИИ, А ЗАТЕМ ПОЛУЧЕННЫЕ ПРОИЗВЕДЕНИЯ СЛОЖИТЬ. ПОЛУЧАЕМ: 2*6+ 3*4+ 4*2+ 4*1+ 4*2+ 4*2 +3*4 +4*2 +4*2 +3*5 = 95
ПОСКОЛЬКУ В СООБЩЕНИИ ИСПОЛЬЗУЕТСЯ 10 РАЗЛИЧНЫХ СИМВОЛОВ, ДЛЯ ИХ КОДИРОВАНИЯ ТРЕБУЕТСЯ КАК МИНИМУМ ЧЕТЫРЕХБИТОВЫЕ ЦЕПОЧКИ, ПОЭТОМУ ПОСЛЕ КОДИРОВАНИЯ ДАННОГО СООБЩЕНИЯ ПОЛУЧИТСЯ ЦЕПОЧКА ОБЪЕМОМ 120 БИТ. КОЭФФИЦИЕНТ СЖАТИЯ ЭТО ОТНОШЕНИЕ ОБЪЕМА ИСХОДНОГО СООБЩЕНИЯ К ОБЪЕМУ СЖАТОГО. В НАШЕМ СЛУЧАЕ ЭТО ОТНОШЕНИЕ РАВНО 120/95 = 120/95 = 1,26 .
НА САМОМ ДЕЛЕ ДАННОЕ СООБЩЕНИЕ В ПАМЯТИ КОМПЬЮТЕРА ЗАКОДИРОВАНО С ПОМОЩЬЮ ASCII, ПОЭТОМУ НА КАЖДЫЙ СИМВОЛ ОТВЕДЕНО 8 БИТ. ТЕМ САМЫМ, ОБЪЕМ ИСХОДНОГО СООБЩЕНИЯ 240 БИТ, А КОЭФФИЦИЕНТ СЖАТИЯ СОСТАВЛЯЕТ 240/95 = 2,53. ИЗ ЭТОГО ВИДНО, КАКОЙ ВЫИГРЫШ МЫ ПОЛУЧИЛИ, ЕСЛИ ЭТО СООБЩЕНИЕ НУЖНО БЫЛО БЫ ПЕРЕДАТЬ ПО КАНАЛУ СВЯЗИ ИЛИ СОХРАНИТЬ НА КАКОМ-ЛИБО НОСИТЕЛЕ.
ДЛЯ ДЕКОДИРОВНИЯ СЖАТОГО СООБЩЕНИЯ ВМЕСТЕ С НИМ ОБЫЧНО ПЕРЕСЫЛАЮТ НЕ КОДЫ ИСХОДНЫХ СИМВОЛОВ (Т.Е. ПЕРВЫЕ ДВЕ СТРОКИ), А САМ ОРГРАФ ХАФФМАНА (БЕЗ УКАЗАНИЯ ВЕСА КОРНЯ И РАЗМЕТКИ НА ДУГАХ, ИБО ОНА СТАНДАРТНА: ДУГА, ИДУЩАЯ ВЛЕВО, РАЗМЕЧАЕТСЯ -0, А ИДУЩАЯ ВПРАВО -1). НА ЭТОМ, ОКАЗЫВАЕТСЯ, ТО ЖЕ МОЖНО СЭКОНОМИТЬ. МАТЕМАТИКИ ДОКАЗАЛИ, ЧТО СРЕДИ АЛГОРИТМОВ КОДИРУЮЩИХ КАЖДЫЙ СИМВОЛ ПО ОТДЕЛЬНОСТИ И ЦЕЛЫМ КОЛИЧЕСТВОМ БИТ АЛГОРИТМ ХАФФМАНА ОБЕСПЕЧИВАЕТ НАИЛУЧШЕЕ СЖАТИЕ.