Презентация урока на тему средняя линия треугольника
- Рубрика: Презентации / Другие презентации
- Просмотров: 101
Презентация для классов "Презентация урока на тему средняя линия треугольника" онлайн бесплатно на сайте электронных школьных презентаций uchebniki.org.ua
Определение
Средней линией треугольника называют отрезок, соединяющий середины двух его сторон.
МN – средняя линия ΔАВС
Теорема
Средняя линия треугольника , соединяющая середины двух его сторон, параллельна третьей стороне и равна ее половине
4.Т.к. АМ=МВ, МВ=ЕС, то ЕС=АМ. Так как ˪3=˪4 (накрест лежащие при АВ и ЕС и секущей ВС), то АВǁЕС.
Дано:
ΔАВС,
MN- средняя линия
Док-ть: MN ǁAB, MN=½АВ
Доказательство:
1.На прямой отметим Е так, что MN=NE.
2.ΔMBN=ΔECN по первому признаку (MN=NE (по построению),BN=NC(по условию), ˪1=˪2 (вертикальные))
3.Из равенства треугольников MB=EC, ˪3=˪4.
5.Таким образом, в четырехугольнике АМЕС стороны АМ и ЕС равны и параллельны, значит, АМЕС- параллелограмм. Отсюда, ME ǁAC. Следовательно,MN ǁAB.
6.Так как МЕ=АС, MN=½ME, то MN=½АВ.
Теорема доказана.
1.MN – средняя линия ΔАВC.Значит, MN ǁAC и MN=½AC.
2.РК – средняя линия ΔАDC.Значит, РК ǁAC и РК=½AC.
3.Так как MN ǁAC и РК ǁAC , то MN ǁРК .
Задача
Докажите, что середины сторон четырехугольника, являются вершинами параллелограмма.
4.Так как MN=½AC и РК=½AC, то MN=РК=½AC.
Дано:
АВСD - четырехугольник,
М-середина АВ,N – середина ВС,
К-середина CD, Р- середина AD
Доказать: MNKP - параллелограмм
Доказательство:
Теорема доказана.
5.Следовательно в четырехугольнике MNKP стороны MN и РК равны и параллельны, а, значит, четырехугольник MNKP – параллелограмм.
Задача.
Является ли отрезок МК – средней линией ΔАВС?
Задача.
Является ли отрезок
EF – средней линией ΔМКР?
Задача.
Отрезки DE и DF – средние линии ΔАВС. Является ли отрезок EF средней линией этого треугольника?
№570 с152
Диагональ АС параллелограмма АВСD равна 18см. Середина М стороны АВ соединена с вершиной D. Найдите отрезки на которые делится диагональ АС отрезком DМ.