Решение комбинаторных задач с помощью бинома Ньютона и полиномиальной формулы
- Рубрика: Презентации / Презентации по Математике
- Просмотров: 192
Презентация для классов "Решение комбинаторных задач с помощью бинома Ньютона и полиномиальной формулы" онлайн бесплатно на сайте электронных школьных презентаций uchebniki.org.ua
Научно – исследовательский проект Выполнен ученицей 10 «А» класса СОШ № 74 г. Краснодара Щегольковой Анной Научный руководитель – учитель математики СОШ № 74 Забашта Елена Георгиевна
изучить и применить бином Ньютона и полиномиальную формулу к решению некоторых комбинаторных задач 1) ознакомиться с формулой бинома Ньютона и ее свойствами, рассмотреть треугольник Паскаля и метод его построения; 2) ознакомиться с полиномиальной формулой как обобщением бинома Ньютона; 3) рассмотреть некоторые комбинаторные задачи, решаемые с помощью бинома Ньютона и полиномиальной формулы.
1.Число всех членов разложения на единицу больше показателя степени бинома, т.е. равно n + 1. 2. Сумма показателей степени a и b каждого члена разложения равна показателю степени бинома. 3. Общий член разложения имеет вид 4. Коэффициенты разложения, одинаково удаленные от концов разложения, равны между собой . Правило симметрии 5. Правило Паскаля
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 70 2 6 20 3 3 4 4 5 5 10 10 6 15 15 6 7 21 35 35 21 7 8 28 56 56 28 8
Доказать, что делится нацело на 64 при любом натуральном n. Доказательство. Обозначив выражение в скобках через а, а N, имеем: Полученная сумма делится на 64, что и требовалось доказать.
Доказать неравенство Бернулли c > 1 + n (c – 1), где с – произвольное число, большее 1, n – натуральное число, большее 1. Доказательство. Для каждого натурального n и чисел a = 1 и b = c-1 верны равенства По условию b > 0 и n > 2. Следовательно, каждое слагаемое (их по меньшей мере три) в полученной сумме строго положительно. Значит, > 1 + nb и доказываемое неравенство верно.