Учебники 📚 » Презентации » Презентации по Математике » Решение линейных уравнений, с параметрами, содержащими знак модуля

Решение линейных уравнений, с параметрами, содержащими знак модуля

Решение линейных уравнений, с параметрами, содержащими знак модуля - Класс учебник | Академический школьный учебник скачать | Сайт школьных книг учебников uchebniki.org.ua
Смотреть онлайн
Поделиться с друзьями:
Решение линейных уравнений, с параметрами, содержащими знак модуля:
Презентация на тему Решение линейных уравнений, с параметрами, содержащими знак модуля к уроку математике

Презентация для классов "Решение линейных уравнений, с параметрами, содержащими знак модуля" онлайн бесплатно на сайте электронных школьных презентаций uchebniki.org.ua

Решение линейных уравнений, с параметрами, содержащими знак модуля
1 слайд

Решение линейных уравнений, с параметрами, содержащими знак модуля

Решить уравнение |х|=а При рассмотрении вариантов для параметра а необходимо помнить, что модуль при
2 слайд

Решить уравнение |х|=а При рассмотрении вариантов для параметра а необходимо помнить, что модуль принимает только неотрицательные значения. при а0 |х|=а, используем геометрический смысл модуля. х=а, и х=–а т.е. два решения. Ответ: при а0, х=а, и х=–а;

|ах+1|=а Параметр а может быть числом неотрицательным. если а0 |ах+1|=а, используя геометрический см
3 слайд

|ах+1|=а Параметр а может быть числом неотрицательным. если а0 |ах+1|=а, используя геометрический смысл модуля, решим два уравнения. ах+1=а и ах+1=–а ах=а–1 ах=–а–1 х=(а–1)/а х=–(а=1)/а Ответ: при а0, х=(а–1)/а, х=–(а=1)/а;

|а–2х|=3 т.к. число 3>0, то используя геометрический смысл, рассмотрим два уравнения. а–2х=3 и а–
4 слайд

|а–2х|=3 т.к. число 3>0, то используя геометрический смысл, рассмотрим два уравнения. а–2х=3 и а–2х=–3 а–3=2х а+3=2х 2х=а–3 2х=а+3 х=(а–3)/2 х=(а+3)/2 т.е. при любых значениях параметра а имеется два решения Ответ: при а – любом, х=(а–3)/2, х=(а+3)/2;

|ах–а|=а, число а должно быть неотрицательным если а0 |ах–а|=а, то рассмотрим два уравнения ах–а=а и
5 слайд

|ах–а|=а, число а должно быть неотрицательным если а0 |ах–а|=а, то рассмотрим два уравнения ах–а=а и ах–а=–а ах=а+а ах=–а+а ах=2а ах=0 х=2а/а х=0/а х=2 х=0 Ответ: при а0, х=2, х=0;

a|х–1|=4 преобразуем уравнение |х–1|=4/а рассмотрим случаи: если а0 |х–1|=4/а, используя геометричес
6 слайд

a|х–1|=4 преобразуем уравнение |х–1|=4/а рассмотрим случаи: если а0 |х–1|=4/а, используя геометрический смысл модуля, рассмотрим два уравнения. х–1=4/а и х–1=–4/а х=1+4/а х=1–4/а Ответ: при а>0, решений нет; при а=0, решений нет; при a>0, х=1+4/а, х=1–4/а;

Уравнения для самостоятельного решения: |х–4|=а; |3–у|=b; |х–7|=а; |х+9|=а; |7–х|=а; |ах–2|=3; |х–2|
7 слайд

Уравнения для самостоятельного решения: |х–4|=а; |3–у|=b; |х–7|=а; |х+9|=а; |7–х|=а; |ах–2|=3; |х–2|=а; |х+3|=b: 2|х–а|=а–2;

Отзывы на uchebniki.org.ua "Решение линейных уравнений, с параметрами, содержащими знак модуля" (0)
Оставить отзыв
Прокомментировать
Регистрация
Вход
Авторизация