Учебники 📚 » Презентации » Презентации по Математике » Тригонометрические функции

Тригонометрические функции

Тригонометрические функции - Класс учебник | Академический школьный учебник скачать | Сайт школьных книг учебников uchebniki.org.ua
Смотреть онлайн
Поделиться с друзьями:
Тригонометрические функции:
Презентация на тему Тригонометрические функции к уроку математике

Презентация для классов "Тригонометрические функции" онлайн бесплатно на сайте электронных школьных презентаций uchebniki.org.ua

Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа №30» Тригонометричес
1 слайд

Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа №30» Тригонометрические функции Подготовила: Шунайлова М., ученица 11 «Д» Руководители: Крагель Т.П., Гремяченская Т.В.. 2006

Тригонометрические функции острого угла есть отношения различных пар сторон прямоугольного треугольн
2 слайд

Тригонометрические функции острого угла есть отношения различных пар сторон прямоугольного треугольника   1) Синус - отношение противолежащего катета к гипотенузе:  sin A = a / c .   2) Косинус - отношение прилежащего катета к гипотенузе:  cos A = b / c . 3) Тангенс - отношение противолежащего катета к прилежащему:  tg A = a / b . 4) Котангенс - отношение прилежащего катета к противолежащему: ctg A = b / a . 5) Секанс - отношение гипотенузы к прилежащему катету:  sec A = c / b . 6) Косеканс - отношение гипотенузы к противолежащему катету: cosec A = = c / a . Аналогично записываются формулы для другого острого угла B  

П р и м е р :  Прямоугольный треугольник ABC  ( рис.2 ) имеет катеты:                          a = 4
3 слайд

П р и м е р :  Прямоугольный треугольник ABC  ( рис.2 ) имеет катеты:                          a = 4,  b = 3. Найти синус, косинус и тангенс угла A.   Р е ш е н и е .  Во-первых, найдём гипотенузу, используя теорему Пифагора:                            c 2 = a2 + b 2 , Согласно вышеприведенным формулам имеем: sin A = a / c = 4 / 5  cos A = b / c = 3 / 5  tg A = a / b = 4 / 3 

Для некоторых углов можно записать точные значения их тригонометрических функций. Наиболее важные сл
4 слайд

Для некоторых углов можно записать точные значения их тригонометрических функций. Наиболее важные случаи приведены в таблице: Углы 0° и 90°, не являются острыми в прямоугольном треугольнике, однако при расширении понятия тригонометрических функций эти углы также рассматриваются. Символ    в таблице означает, что абсолютное значение функции неограниченно возрастает, если угол приближается к указанному значению.

Связь тригонометрических функций острого угла
5 слайд

Связь тригонометрических функций острого угла

Тригонометрические функции двойного угла: sin 2x = 2 sinx cosx cos 2x = cos2x - sin2x tg 2x = 2 tg x
6 слайд

Тригонометрические функции двойного угла: sin 2x = 2 sinx cosx cos 2x = cos2x - sin2x tg 2x = 2 tg x /(1- tg2x) ctg 2x = ctg2x-1/(2 ctg x)

Тригонометрические функции половинного угла Часто бывают полезны формулы, выражающие степени sin и c
7 слайд

Тригонометрические функции половинного угла Часто бывают полезны формулы, выражающие степени sin и cos простого аргумента через sin и cos кратного, например: Формулы для cos2x и sin2x можно использовать для нахождения значений Т. ф. половинного аргумента

Тригонометрические функции суммы углов sin(x+y)= sin x cos y + cos x sin y sin(x-y)= sin x cos y - c
8 слайд

Тригонометрические функции суммы углов sin(x+y)= sin x cos y + cos x sin y sin(x-y)= sin x cos y - cos x sin y cos(x+y)= cos x cos y - sin x sin y cos(x-y)= cos x cos y + sin x sin y

Для больших значений аргумента можно пользоваться так называемыми формулами приведения, которые позв
9 слайд

Для больших значений аргумента можно пользоваться так называемыми формулами приведения, которые позволяют выразить Т. ф. любого аргумента через Т. ф. аргумента x, что упрощает составление таблиц Т. ф. и пользование ими, а также построение графиков. Эти формулы имеют вид: в первых трёх формулах n может быть любым целым числом, причём верхний знак соответствует значению n = 2k, а нижний - значению n = 2k + 1; в последних - n может быть только нечётным числом, причём верхний знак берётся при n = 4k + 1, а нижний при n = 4k - 1.

Важнейшими тригонометрическими формулами являются формулы сложения, выражающие Т. ф. суммы или разно
10 слайд

Важнейшими тригонометрическими формулами являются формулы сложения, выражающие Т. ф. суммы или разности значений аргумента через Т. ф. этих значений: знаки в левой и правой частях всех формул согласованы, то есть верхнему (нижнему) знаку слева соответствует верхний (нижний) знак справа. Из них, в частности, получаются формулы для Т. ф. кратных аргументов, например:

Производные всех Тригонометрических функций выражаются через Тригонометрические функции
11 слайд

Производные всех Тригонометрических функций выражаются через Тригонометрические функции

График функции y = sinx имеет вид:
12 слайд

График функции y = sinx имеет вид:

График функции y = cosx имеет вид:
13 слайд

График функции y = cosx имеет вид:

График функции y = tgx имеет вид:
14 слайд

График функции y = tgx имеет вид:

График функции y = ctgx имеет вид:  
15 слайд

График функции y = ctgx имеет вид:  

История возникновения тригонометрических функций Т. ф. возникли впервые в связи с исследованиями в а
16 слайд

История возникновения тригонометрических функций Т. ф. возникли впервые в связи с исследованиями в астрономии и геометрии. Соотношения отрезков в треугольнике и окружности, являющиеся по существу Т. ф., встречаются уже в 3 в. до н. э. в работах математиков Древней Греции - Евклида, Архимеда, Аполлония Пергского и др. Однако эти соотношения не являются у них самостоятельным объектом исследования, так что Т. ф. как таковые ими не изучались. Т. ф. рассматривались первоначально как отрезки и в такой форме применялись Аристархом (конец 4 - 2-я половина 3 вв. до н. э.)

Гиппархом (2 в. до н. э.), Менелаем (1 в. н. э.) и Птолемеем (2 в. н. э.) при решении сферических тр
17 слайд

Гиппархом (2 в. до н. э.), Менелаем (1 в. н. э.) и Птолемеем (2 в. н. э.) при решении сферических треугольников. Птолемей составил первую таблицу хорд для острых углов через 30' с точностью до 10-6. Разложение Т. ф. в степенные ряды получено И. Ньютоном (1669). В современную форму теорию Т. ф. привёл Л. Эйлер (18 в.). Ему принадлежат определение Т. ф. для действительного и комплексного аргументов, принятая ныне символика, установление связи с показательной функцией, ортогональности системы синусов и косинусов

Отзывы на uchebniki.org.ua "Тригонометрические функции" (0)
Оставить отзыв
Прокомментировать
Регистрация
Вход
Авторизация