первообразная
- Рубрика: Презентации / Презентации по Математике
- Просмотров: 192
Презентация для классов "первообразная" онлайн бесплатно на сайте электронных школьных презентаций uchebniki.org.ua
Первообразной для функции f(x) на некотором интервале называется такая функция F(x), производная которой равна этой функции f(x) для всех x из указанного интервала: F′(x)=f(x). Определение
Свойства первообразной 1.Первообразная суммы равна сумме первообразных 2.Первообразная произведения константы и функции равна произведению константы и первообразной функции 3.Достаточным условием для существования первообразной у заданной на отрезке функции является непрерывность . 4.Необходимыми условиями являются принадлежность функции первому классу Бэра и выполнение для неё свойства Дарбу. 5.У заданной на отрезке функции любые две первообразные отличаются на постоянную.
Основное свойство первообразных Пусть функции F1 и F2 являются первообразными функции f(x) на некотором промежутке. Тогда для всех значений из этого промежутка справедливо следующее равенство: F2=F1+C, где C – некоторая константа.
Правило 1 Если F есть первообразная для некоторой функции f, а G есть первообразная для некоторой функции g, то F + G будет являться первообразной для f + g. По определению первообразной F’ = f. G’ = g. А так как эти условия выполняются, то по правилу вычисления производной для суммы функций будем иметь: (F + G)’ = F’ + G’ = f + g.
Правило 2 Если F есть первообразная для некоторой функции f, а k – некоторая постоянная. Тогда k*F есть первообразная для функции k*f. Это правило следует из правила вычисления производной сложной функции. Имеем: (k*F)’ = k*F’ = k*f.
Правило 3 Если F(x) есть некоторая первообразная для функции f(x), а k и b есть некоторые постоянные, причем k не равняется нулю, тогда (1/k)*F*(k*x+b) будет первообразной для функции f(k*x+b). Данное правило следует из правила вычисления производной сложной функции: ((1/k)*F*(k*x+b))’ = (1/k)*F’(k*x+b)*k = f(k*x+b).
Некоторые первообразные, даже несмотря на то, что они существуют, не могут быть выражены через элементарные функции (такие как многочлены, экспоненциальные функции, логарифмы,тригонометрические функции, обратные тригонометрические функции и их комбинации). Например: