Учебники 📚 » Презентации » Презентации по Литературе » Знакомство с Л.Эйлером! Кто он такой?

Знакомство с Л.Эйлером! Кто он такой?

Знакомство с Л.Эйлером! Кто он такой? - Класс учебник | Академический школьный учебник скачать | Сайт школьных книг учебников uchebniki.org.ua
Смотреть онлайн
Поделиться с друзьями:
Знакомство с Л.Эйлером! Кто он такой?:
Презентация на тему Знакомство с Л.Эйлером! Кто он такой? к уроку по литературе

Презентация для классов "Знакомство с Л.Эйлером! Кто он такой?" онлайн бесплатно на сайте электронных школьных презентаций uchebniki.org.ua

Леона рд Э йлер (нем. Leonhard Euler; 4 (15) апреля 1707, Базель, Швейцария — 7 (18) сентября 1783,
1 слайд

Леона рд Э йлер (нем. Leonhard Euler; 4 (15) апреля 1707, Базель, Швейцария — 7 (18) сентября 1783, Санкт-Петербург, Российская империя) — российский, немецкий и швейцарский математик, внёсший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук. Эйлер — автор более чем 800 работ[L 1] по математическому анализу, дифференциальной геометрии, теории чисел, приближённым вычислениям, небесной механике, математической физике, оптике, баллистике, кораблестроению, теории музыки и др. Почти полжизни провёл в России, где внёс существенный вклад в становление российской науки. В 1726 году он был приглашён работать в Санкт-Петербург, куда переехал годом позже. С 1731 по 1741, а также с 1766 года был академиком Петербургской Академии Наук (в 1741—1766 годах работал в Берлине, оставаясь одновременно почётным членом Петербургской Академии). Хорошо знал русский язык и часть своих сочинений (особенно учебники) публиковал на русском. Первые русские академики-математики (С. К. Котельников) и астрономы (С. Я. Румовский) были учениками Эйлера. Некоторые из его потомков до сих пор живут в России.[L 2]

Основание натуральных логарифмов было известно ещё со времён Непера и Якоба Бернулли, однако Эйлер д
2 слайд

Основание натуральных логарифмов было известно ещё со времён Непера и Якоба Бернулли, однако Эйлер дал настолько глубокое исследование этой важнейшей константы, что с тех пор она носит его имя. Другая исследованная им константа: постоянная Эйлера — Маскерони. Первая книга по вариационному исчислению Он делит с Лагранжем честь открытия вариационного исчисления, выписав уравнения Эйлера — Лагранжа для общей вариационной задачи. В 1744 году Эйлер опубликовал первую книгу по вариационному исчислению («Метод нахождения кривых, обладающих свойствами максимума либо минимума»). Эйлер значительно продвинул теорию рядов и распространил её на комплексную область, получив при этом знаменитую формулу Эйлера. Большое впечатление на математический мир произвели ряды, впервые просуммированные Эйлером, в том числе не поддававшийся до него никому ряд обратных квадратов:

Эйлер много внимания уделял представлению натуральных чисел в виде сумм специального вида и сформули
3 слайд

Эйлер много внимания уделял представлению натуральных чисел в виде сумм специального вида и сформулировал ряд теорем для вычисления числа разбиений. Он исследовал алгоритмы построения магических квадратов методом обхода шахматным конем. При решении комбинаторных задач он глубоко изучил свойства сочетаний и перестановок, ввёл в рассмотрение числа Эйлера.

Он опроверг гипотезу Ферма о том, что все числа вида — простые; оказалось, что F5 делится на 641. До
4 слайд

Он опроверг гипотезу Ферма о том, что все числа вида — простые; оказалось, что F5 делится на 641. Доказал утверждение Ферма о представлении нечётного простого числа в виде суммы двух квадратов. Дал одно из решений задачи о четырех кубах. Эйлер доказал Великую теорему Ферма для n = 3 и n = 4, создал полную теорию непрерывных дробей, исследовал различные классы диофантовых уравнений, теорию разбиений чисел на слагаемые. Он открыл, что в теории чисел возможно применение методов математического анализа, положив начало аналитической теории чисел. В основе её лежат тождество Эйлера и общий метод производящих функций. Эйлер ввёл понятие первообразного корня и выдвинул гипотезу, что для любого простого числа p существует первообразный корень по модулю p; доказать это он не сумел, позднее теорему доказали Лежандр и Гаусс. Большое значение в теории имела другая гипотеза Эйлера — квадратичный закон взаимности, также доказанный Гауссом.

1.a)где родился Л.Эйвер? b)Когда умер он? 2.Сколько работ сделал Эйвер? 3.Какие он исследовал алгори
5 слайд

1.a)где родился Л.Эйвер? b)Когда умер он? 2.Сколько работ сделал Эйвер? 3.Какие он исследовал алгоритмы построения магических квадратов? Методом: . . . . .

1. Рассказывают, что Эйлер не любил театра, и если попадал туда, поддавшись уговорам жены, то чтобы
6 слайд

1. Рассказывают, что Эйлер не любил театра, и если попадал туда, поддавшись уговорам жены, то чтобы не скучать, выполнял в уме сложные вычисления, подобрав их объём так, чтобы хватило как раз до конца представления. 2. В 1739 году вышла работа Эйлера «Tentamen novae theoriae musicae» по математической теории музыки. По поводу этой работы ходила шутка, что в ней слишком много музыки для математиков и слишком много математики для музыкантов. 3. Маркиз Кондорсе сообщает, что вскоре после переезда в Берлин Эйлера пригласили на придворный бал. На вопрос королевы-матери, отчего он так немногословен, Эйлер ответил: «Прошу меня простить, но я только что из страны, где за лишнее слово могут повесить». А. С. Пушкин приводит романтический рассказ: якобы Эйлер составил гороскоп для новорождённого Иоанна Антоновича (1740), но результат его настолько испугал, что он никому не стал его показывать, и лишь после смерти несчастного царевича рассказал о нём графу К. Г. Разумовскому. Достоверность этого исторического анекдота крайне сомнительна.

Отзывы на uchebniki.org.ua "Знакомство с Л.Эйлером! Кто он такой?" (0)
Оставить отзыв
Прокомментировать
Регистрация
Вход
Авторизация