Понятие вектора
- Рубрика: Презентации / Презентации по Геометрии
- Просмотров: 281
Презентация для классов "Понятие вектора" онлайн бесплатно на сайте электронных школьных презентаций uchebniki.org.ua
Длиной или модулем вектора называется длина отрезка АВ Отрезок, для которого указано, какая из его граничных точек считается началом, а какая – концом, называется направленным отрезком или вектором Начало вектора Конец вектора
Любая точка плоскости также является вектором. В этом случае вектор называется нулевым Длина нулевого считается равной нулю Начало нулевого вектора совпадает с его концом, поэтому нулевой вектор не имеет какого-либо определенного направления. Иначе говоря, любое направление можно считать направлением нулевого вектора.
Многие физические величины, например сила, перемещение материальной точки, скорость, характеризуются не только своим числовым значением, но и направлением в пространстве. Такие физические величины называются векторными величинами (или коротко векторами) 8 Н
Электрический ток, т.е. направленное движение зарядов, создает в пространстве магнитное поле, которое характеризуется в каждой точке пространства вектором магнитной индукции. На рисунке изображены векторы магнитной индукции магнитного поля прямого проводника с током.
Два ненулевых вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. Коллинеарные, сонаправленные векторы Нулевой вектор считается коллинеарным, сонаправленным с любым вектором.
Два ненулевых вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. Коллинеарные, противоположно направленные векторы
Векторы называются равными, если они сонаправлены и их длины равны. 1 2 Найдите еще пары равных векторов. О – точка пересечения диагоналей.
С А В D 4 3 4 3 1,5 4 5 5 M № 745 В прямоугольнике АВСD АВ=3см, ВС=4см, точка М – середина стороны АВ. Найдите длины векторов.
№ 747 Укажите пары коллинеарных (сонаправленных) векторов, которые определяются сторонами параллелограмма MNPQ. M N P Q
№ 747 Укажите пары коллинеарных (противоположнонаправленных) векторов, которые определяются сторонами параллелограмма MNPQ. M N P Q
№ 747 Укажите пары коллинеарных (сонаправленных) векторов, которые определяются сторонами трапеции АВСD с основаниями AD и BC. А В С D Сонаправленные векторы Противоположноонаправленные векторы
№ 747 Укажите пары коллинеарных векторов, которые определяются сторонами треугольника FGH. F G H Коллинеарных векторов нет
№ 748 В параллелограмме АВСD диагонали пересекаются в точке О. Равны ли векторы. Обоснуйте ответ. А В С D
№ 749 Точки S и Т являются серединами боковых сторон MN и LK равнобедренной трапеции MNLK. Равны ли векторы. M N L K S T
а) коллинеарные векторы; б) сонаправленные векторы; в) противоположные векторы; г) равные векторы; д) векторы, имеющие равные длины. В четырехугольнике АВСD , О – точка пересечения диагоналей. Прямая проходит через точку О и пересекает стороны ВС и АD в точках М и N соответственно. А В С D m ?! Среди векторов найдите , АВСD – параллелограмм Проверка
АВС – равнобедренный треугольник. О – точка пересечения медиан. По данным рисунка найти А В С 10 = 2 8 2 = 4