Свойства функций непрерывных на отрезке
- Рубрика: Презентации / Презентации по Алгебре
- Просмотров: 257
Презентация для классов "Свойства функций непрерывных на отрезке" онлайн бесплатно на сайте электронных школьных презентаций uchebniki.org.ua
ОТВЕТИТЬ НА ВОПРОСЫ: Дайте определение монотонно возрастающей (убывающей) функции; Дайте определение функции непрерывной в точке; Дайте определение функции непрерывной на промежутке; Сформулируйте теорему Больцано-Коши (о промежуточных значениях); Сформулируйте теорему о корне.
РАССМОТРИМ ФУНКЦИЮ И ОТВЕТИМ НА ВОПРОСЫ: Какова область определения этой функции? Какова ее область значений? Является ли эта функция монотонной? Каков характер ее монотонности (возрастает, убывает)? Может ли эта функция принимать значение равное 0? 1? 5? 14? Почему? При каком х значение функции f(x)=3?
ТЕОРЕМА БОЛЬЦАНО-КОШИ: Если функция непрерывна на отрезке и на концах его принимает значения противоположных знаков, то внутри отрезка существует по крайней мере одна точка, в которой функция принимает значение равное нулю.
ТЕОРЕМА О КОРНЕ: Если функция f(x) определена на множестве I и монотонно возрастает (убывает) на нем, то уравнение f(x)=a имеет единственное решение, если а принадлежит множеству значений функции f(x) и не имеет решений, если число а этому множеству не принадлежит.
РЕШЕНИЕ: x =2 является корнем уравнения. Рассмотрим функцию Исходное уравнение примет вид: Функция определена на множестве [1;+∞) и монотонно возрастает на нем (как сумма возрастающих функций). По теореме о корне х =2 является единственным корнем уравнения.
ДОКАЖИТЕ, ЧТО СЛЕДУЮЩИЕ УРАВНЕНИЯ ИМЕЮТ ЕДИНСТВЕННОЕ РЕШЕНИЕ И УКАЖИТЕ РЕШЕНИЕ КАЖДОГО ИЗ УРАВНЕНИЙ:
РЕШИМ УРАВНЕНИЕ Это уравнение определено при х > -3. Использование определения логарифма в данном случае приводит к трудно разрешимому уравнению Поступим иначе, введем в рассмотрение функцию Тогда исходное уравнение примет вид: Функция монотонно возрастает на (-3;+∞), поэтому уравнение имеет единственный корень х = 2.